EE 330 Lecture 35

Amplifier Biasing

Frequency-Dependent Performance of Amplifiers

Parasitic Capacitances in MOS Devices

Exam Schedule

Exam 1 Exam 2 Exam 3 Final Friday Sept 24 Friday Oct 22 Friday Nov 19 Tues Dec 14 12:00 p.m.

As a courtesy to fellow classmates, TAs, and the instructor

Wearing of masks during lectures and in the laboratories for this course would be appreciated irrespective of vaccination status

Review from Last Lecture **Cascode Configuration** Discuss $A_{VCC} \cong - \left| \frac{g_{m1}}{g_{02}} \beta \right| \cong - \left| \frac{g_{m1}}{g_{01}} \right| \beta$ $g_{0CC} \cong \frac{g_{02}}{R}$ Q_2 V_{XX} $A_{VCC} \cong - \left| \frac{g_{m1}}{g_{01}} \right| \beta = \left| \frac{2V_{AF}}{V_t} \right| \beta = \left[-8000 \right] 100$ Q_1 $v_{\scriptscriptstyle \mathsf{IN}}$ V_{SS} $A_{VCC} \cong -800,000$

This gain is very large and only requires two transistors!

What happens to the gain if a transistor-level current source is used for I_B ?

Review from Last Lecture Cascode Configuration

Review from Last Lecture Cascode Configuration Comparisons

Can we design a better current source? In particular, one with a higher output impedance?

Cascode current sources

Review from Last Lecture Cascode Configuration

$$A_{V} = -\left[\frac{g_{m1}}{g_{01}}\right]\frac{\beta}{2}$$
$$A_{V} = -[8000]\frac{100}{2} \approx -400,000$$

This gain is very large and is a factor of 2 below that obtained with an ideal current source biasing

Although the factor of 2 is not desired, the performance of this circuit is still very good

This factor of 2 gain reduction is that same as was observed for the CE amplifier when a transistorlevel current source was used

Review from Last Lecture High Gain Amplifier Comparisons (n-ch MOS)

Review from Last Lecture High Gain Amplifier Comparisons (BJT)

 $A_V \cong - \left| \frac{g_{m1}}{g_{01}} \right|$

 $v_{ ext{in}} \oplus$

Vss

 $A_V = - \left| \frac{g_{m1}}{g_{01}} \right| \frac{\beta}{2}$

- Single-ended high-gain amplifiers inherently difficult to bias (because of the high gain)
- Biasing becomes practical when used in differential applications
- These structures are widely used but usually with differential inputs

Amplifier biasing is that part of the design of a circuit that establishes the desired operating point (or Q-point)

Goal is to invariably minimize the impact the biasing circuit has on the small-signal performance of a circuit

Usually at most 2 dc power supplies are available and these are often fixed in value by system requirements – this restriction is cost driven

Discrete amplifiers invariable involve adding biasing resistors and use capacitor coupling and bypassing

Integrated amplifiers often use current sources which can be used in very large numbers and are very inexpensive

Actual small-signal circuit

$$A_{v} = -g_{m} (R_{L} //R_{C1})$$

Biasing components

Example:

Desired small-signal circuit Common Emitter Amplifier

Biased small-signal circuit

Example:

Desired small-signal circuit Common Collector Amplifier

Biased circuit

Example:

Desired small-signal circuit Inverting Feedback Amplifier

Biased circuit

Darlington Configuration

2,663,806

SEMICONDUCTOR SIGNAL TRANSLATING DEVICE

- Current gain is approximately β²
- Two diode drop between B_{eff} and E_{eff}

Sziklai Pair

±10, 0,

2,791,644

PUSH-PULL AMPLIFIER WITH COMPLEMENTARY TYPE TRANSISTORS

Filed Nov. 7, 1952

- Gain similar to that of Darlington Pair
- Current gain is approximately β_n β_p
- Current gain will not be as large when $\beta_p < \beta_n$
- Only one diode drop between B_{eff} and E_{eff}

Buffer and Super Buffer

- Voltage shift varies with V_{IN} in buffer
- Current through shift transistor is constant for Super Buffer as V_{IN} changes so voltage shift does not change with V_{IN}
- Same nominal voltage shift

Low offset buffers

- Actually a CC-CC or a CD-CD cascade
- Significant drop in offset between input and output
- Biasing with DC current sources
- Can Add Super Buffer to Output

Voltage Attenuator

- Attenuation factor is quite accurate (Determined by geometry)
- Infinite input impedance
- M_1 in triode, M_2 in saturation
- Actually can be a channel-tapped structure

Frequency-Dependent Performance of Amplifiers

- This capacitance was modeled previously and exists when the transistor is operating in triode or saturation
- But there are others that also affect high-frequency or high-speed operation

Recall that pn junctions have a depletion region!

pn junction capacitance

pn junction capacitance

The bottom and the sidewall:

 $\{C_{\text{BOT0}},C_{\text{SW0}},\phi_{\text{B}},m\}$

 C_{BOT} and C_{SW} are capacitance densities

Types of Capacitors in MOSFETs

1. Fixed Capacitors

- a. Fixed Geometry
- b. Junction
- 2. Operating Region Dependent

Parasitic Capacitors in MOSFET Fixed Capacitors – Fixed Geometry

Overlap Capacitors: C_{GDO} , C_{GSO} L_D: lateral diffusion

Cap Density: C_{OX}

Parasitic Capacitance Summary (partial)

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D	CoxWL _D	CoxWL _D
	CoxWL _D	CoxWL _D	CoxWL _D

 $L_{\mbox{\scriptsize D}}$ is a model parameter

Overlap Capacitance Model Parameters

CAPACI	TANCE	PARAMETERS	N+	P+	POLY	M1	М2	ΜЗ	M4	М5	Μ6	R_₩	D	_N_	W M	5P	N_W	UNITS
Area	(subst	trate)	942	110	53 106	34	14	9	6	5	3			1	.23		125	aF/um^2
Area	(N+act	tive)			8484	55	20	13	11	9	8							aF/um^2
Area	(P+act	tive)			8232													aF/um^2
Area	(poly))				66	17	10	7	5	4							aF/um^2
Area	(metal	L1)					37	14	9	6	5							aF/um^2
Area	(metal	L2)						35	14	9	6							aF/um^2
Area	(metal	L3)							37	14	9							aF/um^2
Area	(metal	L4)								36	14							aF/um^2
Area	(metal	15)									34					98	34	aF/um^2
Area	(r wel	ll)	920	C														aF/um^2
Area	(d wel	ll)										582	2					aF/um^2
Area	(no we	ell)	137	7														aF/um^2
Fring	je (suk	ostrate)	212	2 2	235	41	35	29	21	14								aF/um
Fring	je (pol	ly)				70	39	29	23	20	17							aF/um
Fring	je (met	tal1)					52	34		22	19							aF/um
Fring	je (met	tal2)						48	35	27	22							aF/um
Fring	je (met	tal3)							53	34	27							aF/um
Fring	je (met	tal4)								58	35							aF/um
Fring	ge (met	tal5)			_						55							aF/um
Overl	ap (N+	+active)			89	5												aF/um
Overl	ap (P+	+active)			73	7												aF/um

Types of Capacitors in MOSFETs

- 1. Fixed Capacitors
 - a. Fixed Geometry
- b. Junction
 - 2. Operating Region Dependent

Parasitic Capacitors in MOSFET Fixed Capacitors- Junction

Junction Capacitors: C_{BS1}, C_{BD1}

- Fixed Capacitors

Overlap Capacitors: C_{GDO} , C_{GSO} Junction Capacitors: C_{BS1} , C_{BD1}

Fixed Parasitic Capacitance Summary

 C_{BOT} and C_{SW} are model parameters

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D	CoxWL _D	CoxWL _D
	CoxWL _D	CoxWL _D	CoxWL _D
C _{BS}	$C_{BS1} = C_{BOT}A_S + C_{SW}P_S$	$C_{BS1} = C_{BOT}A_S + C_{SW}P_S$	$C_{BS1} = C_{BOT}A_S + C_{SW}P_S$
	$C_{BD1} = C_{BOT}A_{D} + C_{SW}P_{D}$	$C_{BD1} = C_{BOT}A_D + C_{SW}P_D$	$C_{BD1} = C_{BOT}A_D + C_{SW}P_D$

C_{BOT} and C_{SW} model parameters

CAPACITANCE PARAMET	ERS N+ P+ POL	Y M1	М2	MЗ	M4	Μ5	Μ6	R_W	D_N_W M	5P N_W	UNITS
Area (substrate)	942 1163 1	06 34	14	9	6	5	3		123	125	aF/um^2
Area (N+active)	84	84 55	20	13	11	9	8				aF/um^2
Area (P+active)	82	32									aF/um^2
Area (poly)		66	17	10	7	5	4				aF/um^2
Area (metal1)			37	14	9	6	5				aF/um^2
Area (metal2)				35	14	9	6				aF/um^2
Area (metal3)					37	14	9				aF/um^2
Area (metal4)						36	14				aF/um^2
Area (metal5)							34			984	aF/um^2
Area (r well)	920										aF/um^2
Area (d well)								582	2		aF/um^2
Area (no well)	137										aF/um^2
Fringe (substrate)	212 235	41	35	29	21	14					aF/um
Fringe (poly)		70	39	29	23	20	17				aF/um
Fringe (metal1)			52	34		22	19				aF/um
Fringe (metal2)				48	35	27	22				aF/um
Fringe (metal3)					53	34	27				aF/um
Fringe (metal4)						58	35				aF/um
Fringe (metal5)							55				aF/um
Overlap (N+active)		895									aF/um
Overlap (P+active)		737									aF/um

Types of Capacitors in MOSFETs

- 1. Fixed Capacitors
 - a. Fixed Geometry
 - b. Junction
- **2**. Operating Region Dependent

Parasitic Capacitors in MOSFET Operation Region Dependent -- Cutoff

Cutoff Capacitor: C_{GBCO}

Parasitic Capacitors in MOSFET Operation Region Dependent -- Cutoff

Cutoff Capacitor: C_{GBCO}

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed -- Cutoff

Overlap Capacitors: C_{GDO} , C_{GSO} Junction Capacitors: C_{BS1} , C_{BD1} **Cutoff Capacitor:** C_{GBCO}

Parasitic Capacitance Summary $\int_{C_{GD}} \int_{C_{BD}} \int_{C_{BD}}$

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D		
	CoxWL _D		
C _{BG}	CoxWL (or less)		
C _{BS}	C _{BOT} A _S +C _{SW} P _S		
C _{BD}	$C_{BOT}A_{D}+C_{SW}P_{D}$		

S

Parasitic Capacitors in MOSFET Operation Region Dependent -- Ohmic

Note: The Channel is not a node in the lumped device model so can not directly include this distributed capacitance in existing models

Note: The distributed channel capacitance is usually lumped and split evenly between the source and drain nodes

Ohmic Capacitor: C_{GCH} , C_{BCH}

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed -- Ohmic

Overlap Capacitors: C_{GDO} , C_{GSO} Junction Capacitors: C_{BS1} , C_{BD1} **Ohmic Capacitor:** C_{GCH} , C_{BCH}

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D	0.5CoxWL	
	CoxWL _D	0.5CoxWL	
C _{BG}	CoxWL (or less)	0	
C _{BS}	$C_{BOT}A_S + C_{SW}P_S$	C _{BOT} A _S +C _{SW} P _S +0.5WLC _{BOTCH}	
C _{BD}	$C_{BOT}A_{D}+C_{SW}P_{D}$	C _{BOT} A _D +C _{SW} P _D +0.5WLC _{BOTCH}	

S

Parasitic Capacitors in MOSFET Operation Region Dependent -- Saturation

distributed capacitors to the channel are generally lumped to the source node

Saturation Capacitors: C_{GCH}, C_{BCH}

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed --Saturation

Overlap Capacitors: C_{GDO} , C_{GSO} Junction Capacitors: C_{BS1} , C_{BD1} **Saturation Capacitors:** C_{GCH} , C_{BCH}

- $2/3 C_{OX}WL$ is often attributed to C_{GCH} to account for LD and saturation
- This approximation is reasonable for minimum-length devices but not so good for longer devices

Parasitic Capacitance Summary C_{GD} C_{BD} B G C_{BS} C_{BG} S

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D	0.5C _{OX} WL	CoxWL _D +(2/3)C _{OX} WL
	CoxWL _D	0.5C _{OX} WL	CoxWL _D
	CoxWL (or less)	0	0
C _{BS}	$C_{BOT}A_S + C_{SW}P_S$	C _{BOT} A _S +C _{SW} P _S +0.5WLC _{BOTCH}	C _{BOT} A _S +C _{SW} P _S +(2/3)WLC _{BOTCH}
	$C_{BOT}A_{D}+C_{SW}P_{D}$	C _{BOT} A _D +C _{SW} P _D +0.5WLC _{BOTCH}	C _{BOT} A _D +C _{SW} P _D

Parasitic Capacitance Summary

	Cutoff	Ohmic	Saturation
C _{GS}	CoxWL _D	0.5C _{OX} WL	CoxWL _D +(2/3)C _{OX} WL
	CoxWL _D	0.5C _{OX} WL	CoxWL _D
	CoxWL (or less)	0	0
C _{BS}	$C_{BOT}A_{S}+C_{SW}P_{S}$	C _{BOT} A _S +C _{SW} P _S +0.5WLC _{BOTCH}	$C_{BOT}A_{S}+C_{SW}P_{S}+(2/3)WLC_{BOTCH}$
C _{BD}	$C_{BOT}A_{D}+C_{SW}P_{D}$	C _{BOT} A _D +C _{SW} P _D +0.5WLC _{BOTCH}	$C_{BOT}A_{D}+C_{SW}P_{D}$

Parasitic Capacitance Implications

The parasitic capacitances inherently introduce an upper limit on how fast either digital circuits or analog circuits can operate in a given process

Two parameters, f_{MAX} and f_{T} , (not defined here) are two metric that are used to specify the fundamental speed limit in a semiconductor process

The dominant parasitic capacitances for most circuits are C_{GS} and C_{BD}

Example: Determine the small-signal voltage gain and the 3dB bandwidth. Consider only the effects of C_{DB} on the BW. Assume a 0.5u process with V_{TH} =0.75V and the layout of the transistor shown.

 $C_{DB} = C_{BOT}^* 40u^2 + C_{SW}^* 28u$

 $C_{BOT}=942aF/u^2$ $C_{SW}=212aF/u$ $C_{DB}=942aF/u^2*40u^2+212aF/u*28u$ $C_{DB}=37.7fF+5.9fF=43.6fF$

Solution:

$$I_{DQ} = 100 \,\mu A \,/\, V^2 \,\frac{10}{2 \cdot 1} (2 - 0.75)^2 = 0.78 \,mA$$
$$I_{DQ} \,R_D = 0.78 \,mA \cdot 2K = 1.56$$

Example: Determine the small-signal dc voltage gain and the 3dB bandwidth. Consider only the effects of C_{DB} on the BW. Assume a 0.5u process with V_{TH} =0.75V and the layout of the transistor shown.

Solution continued:

Parasitic Capacitance Summary

High Frequency Large Signal Model

High Frequency Small Signal Model (saturation region)

Often $V_{BS}=0$ and $C_{BG}=0$ in saturation, so simplifies to

High Frequency Small-Signal Model

(Saturation Region)

Often $V_{BS}=0$ and $C_{BG}=0$, so simplifies to

High Frequency Small-Signal Model

Often $V_{BS}=0$ and $C_{BG}=0$ and C_{GD} and g_0 can be neglected so simplifies farther to

Neglecting C_{GD} which is high frequency feedback from output to input often simplifies analysis considerably

Recall:

Small-signal and simplified dc equivalent elements

Have not yet considered situations where the small capacitor is relevant in small-signal analysis

Recall:

Small-signal and simplified dc equivalent elements

Have not yet considered situations where the small capacitor is relevant in small-signal analysis

Consider a bipolar amplifier first where C_3 is a small capacitor but not a parasitic capacitor

Recall:

If capacitors are large

 $= -g_{m1} \bullet R_3 / R_1$

What if C_1 and C_2 large but C_3 is not large?:

What if C_1 and C_2 large but C_3 not large?:

From KCL:

$$\begin{array}{l} \boldsymbol{\mathcal{V}}_{OUT}\left(\boldsymbol{s}\boldsymbol{C}_{3}+\boldsymbol{G}_{L}\right)=\boldsymbol{\mathcal{V}}_{1}\boldsymbol{s}\boldsymbol{C}_{3} \\ \boldsymbol{\mathcal{V}}_{1}\left(\boldsymbol{s}\boldsymbol{C}_{3}+\boldsymbol{G}_{3}\right)+\boldsymbol{g}_{m1}\boldsymbol{\mathcal{V}}_{N}=\boldsymbol{\mathcal{V}}_{OUT}\boldsymbol{s}\boldsymbol{C}_{3} \end{array} \right)$$

Solving:

$$\frac{\mathcal{V}_{OUT}}{\mathcal{V}_{N}} = -\frac{-sC_{3}g_{m1}}{sC_{3}(G_{L}+G_{3})+G_{3}G_{L}}$$

Equivalently:

$$\frac{\mathcal{V}_{OUT}}{\mathcal{V}_{N}} = -\frac{g_{m1}sC_{3}R_{3}R_{L}}{sC_{3}(R_{L}+R_{3})+1}$$

Serves as a first-order high-pass filter

Consider parasitic C_{GS} and C_{DB}

Solving:

$$\frac{v_{OUT}}{v_{N}} = -\frac{-g_{m1}}{sC_{DB}+G_{D}}$$
 Equivalently:

$$\frac{y_{OUT}}{v_{N}} = -\frac{-g_{m1}R_{D}}{sC_{DB}R_{D}+1}$$

Consider parasitic C_{GS} , C_{GD} , and C_{DB}

Device parasitics problematic at high frequencies

 C_{DB} , C_{GD} and C_{GS} effects can be significant

Value of parasitic capacitances strongly dependent upon layout

Device parasitics usually not a problem at audio frequencies

Causes gain to decrease at high frequencies: has one high frequency LHP pole and one high frequency RHP zero.

Stay Safe and Stay Healthy !

End of Lecture 35